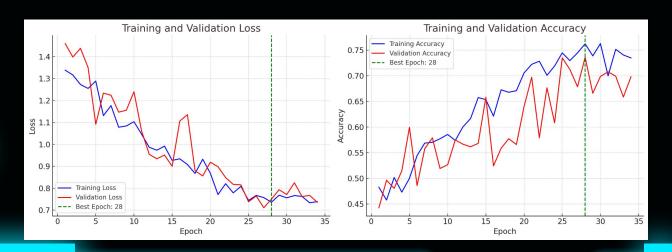


Rodrigo Alarcon, Emma Conti, Lamine Deen, Audrey Eley Advisor: Dr. Zahra Nematzadeh


Task Matrix: Milestone 6

Task	Rodrigo	Emma	Lamine	Audrey
2. ML testing and refinement of framework	0%	25%	50%	25%
3. Web testing	40%	20%	20%	20%
4. Integrating Base ML Model with Web Using a Neural Network Framework	50%	0%	0%	50%
Task	Rodrigo	Emma	Lamine	Audrey

Task 1 - ML Improvements

Final version of CNN: Attention Enhanced CNN

Final Precision: 69%, Accuracy 70%

Task 1 - ML Improvements

Data preprocessing steps:

- 1. Initial Data Audit
- 2. Filtering & Cleaning
- 3. Waveform to Mel-Spectrogram
- 4. Cough Segment Extraction
- 5. Metadata Sync & Class Selection
- 6. Oversampling Minority Class
- 7. Augmentation Integration
- 8. Final Balancing & Shuffle
- 9. Dataset Splitting
- 10. PyTorch DataLoader Prep

Hyperparameters for the mel-spectrogram

Target Sample Rate: 22050

Length of the FFT window: 2048

Hop length for STFT: 256 Number of mel bands: 256

Maximum frequency to display: 8000

Model results:

Training Accuracy: 76.48% Validation Accuracy: 69.82%

Best Epoch: 28

Training Runtime: 45.5 minutes

Task 1 - ML Improvements

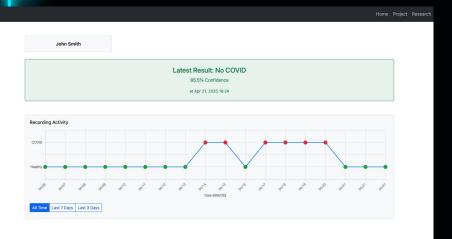
Model Overview Architecture:

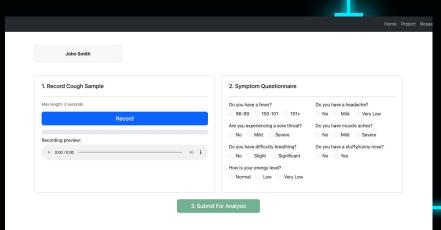
- Block 1: Conv 3×3 (1→32) → BN → ReLU → MaxPool 2×2 → Channel-Attention 32
 → Spatial-Attention
- Block 2: Conv 3×3 (32→64) → BN → ReLU → MaxPool 2×2 → Channel-Attention 64
 → Spatial-Attention
- Block 3: Conv 3×3 (64→128) → BN → ReLU → MaxPool 2×2 → Channel-Attention 128 → Spatial-Attention
- Head: AdaptiveAvgPool 1×1 → Flatten → FC 128→64 → ReLU → Dropout 0.5 → FC 64→2 (logits)

Task 2 - Web Testing

WebApp Testing

- User experience survey sent out
- Implementing the model
- Updating the Research Page


WebApp Improvements


- Changed page
- Changed features of graphs
- Added additional symptoms to questionnaire

Task 3 - ML/Web Integration

Web Integration

- Implemented Attention Enhanced CNN model

Lessons Learned

Lessons Learned

- If the accuracy of the labeled data had been checked sooner, the early CNN and ResNet50 development would have gone better
 - Would have been able to tell if the results we initially received were accurate
- Certain accommodations must be made on the website to account for the fact that our primary user will be sick or impaired
 - Adjusting times and ways to view the features for ease of use rather than providing the maximum amount of information at a time
- Ensuring the security of the data
 - Making sure the database implemented to save each recording was secure because it contains medical information was harder to achieve than initially thought

Showcase Poster

Automated COVID-19 Detection

vocovid

ENGINEERING & SCIENCE Rodrigo Alarcon, Emma Conti, Lamine Deen, Audrey Eley

STUDENT DESIGN SHOWGASE Faculty Advisor: Dr. Nematzadeh, Dept. of Computer Science, Florida Institute of Technology

FLORIDA TECH

PHASE 1: Data Cleaning & Preprocessing

Oversampling Minority Class

Final Balancing & Shuffling

Preprocessing for Attention Enhanced CNN

Initial Data Audit
Filtering & Cleaning
Waveform to

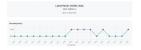
Cough Segment

Dataset Splitting
PyTorch DataLoade

- Used Kaggle dataset: "Covid-19 Cough Audio Classification"
 All recordings converted into Mel Spectrograms
- Binarized target variable to "Healthy" and "COVID"
- CNN Model Achritechture

 Block 1: Conv 3×3 (1→32) → BN → ReLU → MaxPool
- 2×2 → Channel-Attention 32 → Spatial-Attention

 Block 2: Conv 3×3 (32→64) → BN → ReLU → MaxPool
- 2×2 → Channel-Attention 64 → Spatial-Attention


 Block 3: Conv 3×3 (64→128) → BN → ReLU → MaxPool
- Shock 5: Conv 3×5 (64→126) → BN → RetO → MaxPool
 2×2 → Channel-Attention 128 → Spatial-Attention
 Head: AdaptiveAvgPool 1×1 → Flatten → FC 128→64 →
- ReLU → Dropout 0.5 → FC 64→2 (logits)

PHASE 4: Web Application

- · Interface for classification via CNN model
- Displays all research done for the project on the various types of ML models
- Integrates the CNN and allows users to upload recordings of coughs
- Symptom questionnaire
- · Login and recording saved securely
- · Can save multiple recordings per user
- Segments recording to one cough, converts to Mel spectrogram, and classifies recording
- Recommends testing for COVID-19 if classification of recording is COVID-19 positive

VoCOVID Dashboard

VoCOVID Recording Activity

Audio 242 & Shortened Mel-Spectrogram ReLU

ResNet50 Attention Enhanced CNN

Developed Models for Testing

Testing of Middlen Jam.

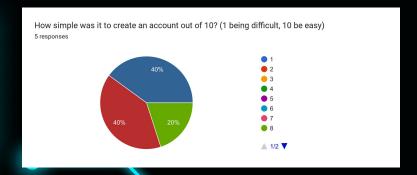
**Testing o

Attention Enhanced CNN Training Validation
Loss and Accuracy

- ResNet50 model uses pretrained ResNet50 model and replaces with our data at the last layer to maximize accuracy
- Attention Enhanced CNN uses 3 convolutional
- 1,118 datapoints are used under each classification using oversampling to ensure there is an equal amount of each evaluation type
- Attention Enhanced CNN was selected for integration within the web application

PHASE 3: Evaluation

- Highest achieved accuracy with Attention Enhanced CNN was 69%
 Precision was 73%, minimizing false positive and
- negatives
- uses a binary model to determine if user has COVID or is considered healthy
- results may indicate the user is 'symptomatic' under a healthy evaluation based on confidence level
- **Binary Evaluation of User Status**


User Testing

Users rated it as extremely easy to use

Average Ease of Use for Creating an Account: 7.6 our 10 (10 being easy)

Average Ease of Use for Recording and Receiving an Evaluation: 9.5 (10 being easy)

Only 1 user did not receive the results they were anticipating to receive (Healthy, COVID)

User Manual

Table of Contents

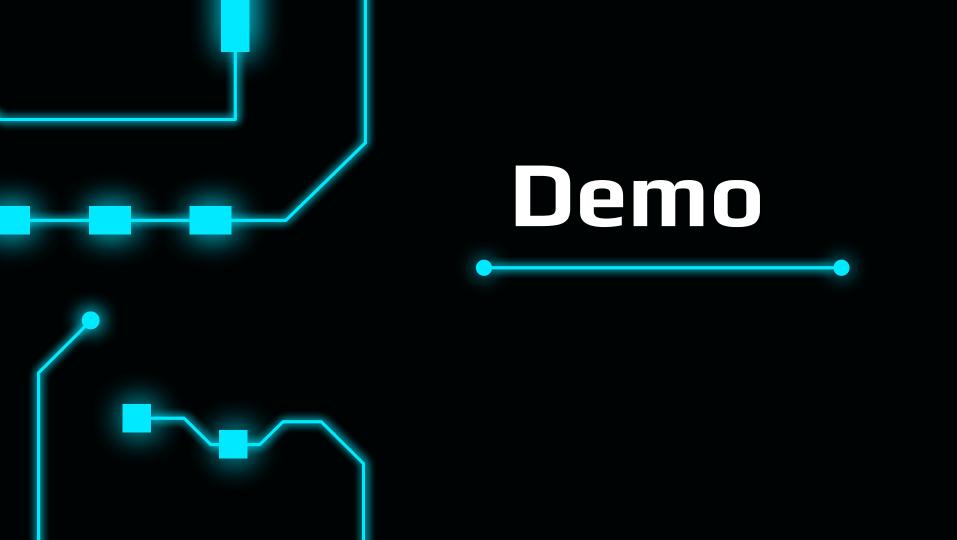
- Project Goal and Motivation
 - Our Approach
 - What it Does
- How to Use
 - Creating an Account
 - Uploading a Recording
- Web Application Development
- Machine Learning Model Development
- Data Preprocessing
- References

Thank You to Our Testers

College Students

Erin Brasher Persea Halloran Charlotte Eley Christopher DeMuro Giulianna Hartsell

Over 40 Age Group


Christine Conti Eley

Under 18 Age Group

Daisy Carter Nicholas Carter

18-39 Age Group

Christopher Spillane

