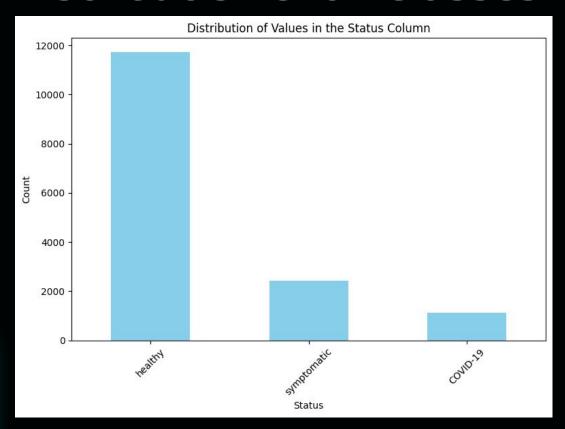


Rodrigo Alarcon, Emma Conti, Lamine Deen, Audrey Eley Advisor: Dr. Zahra Nematzadeh

Task Matrix: Milestone 3

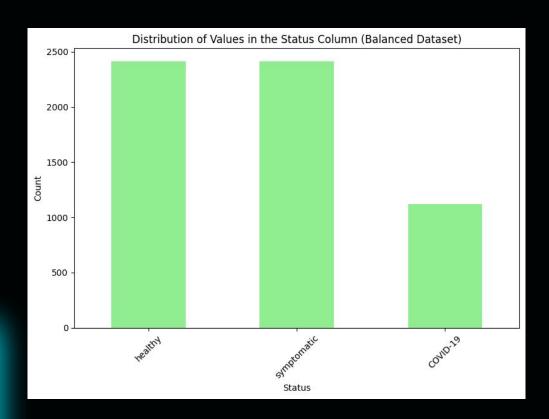
Task	Rodrigo	Emma	Lamine	Audrey	
1. Begin ML Testing	Test using chosen benchmark model (ResNet50) and initial testing from our model.				
2. Refine ML Workflow	Continue to improve the ML model. Determine which improvement strategies to implement based on testing results.				
Begin Web Testing	Begin implementing a framework for users to access the CNN and upload their coughs.				
4. Integrating Base ML Model with Web Using a Neural Network Framework	Determine how successfully and efficiently the two can be integrated, and what may need to change within the web framework to better accommodate and suit the CNN.				

Task 1 - Begin ML Testing


- Feature engineering continued
- ResNet50 model has been set up for testing on COVID-19 dataset

Dataset cleaning must be completed before further testing can be completed

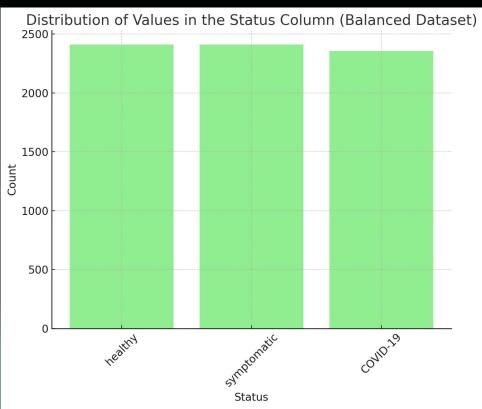
Task 2 - Refine ML Workflow


- Oversampling: Used for the COVID-19 class to address class imbalance.
- Augmentation: Applied three techniques to increase dataset size and diversity.
- Changed the data augmentation method to be applied randomly to covidence of the covidence
 - **Improved Learning**: Enhanced the model's capacity with better preprocessing.
 - **Data Split**: 60% Training, 20% Validation set, and 20% Test set.

Distribution of all Classes for 'Status'

status healthy 11715 symptomatic 2411 COVID-19 1118

Distribution after Oversampling


status

COVID-19 1118

healthy 2411

symptomatic 2411

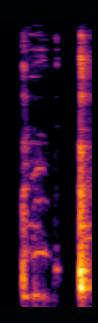
Distribution after Data Augmentation

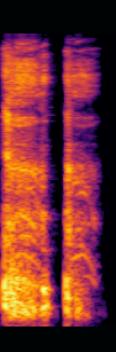
status

COVID-19 2355

healthy 2411

symptomatic 2411


Data Transformation - Mel Spectrograms


- High-Resolution Mel Spectrograms:
 Generated with Librosa instead of pytorch to capture audio features.
- Grayscale Conversion: Reduced input complexity by eliminating RGB channels and focusing on auditory information.
- Normalization: Standardized spectrogram values to ensure consistency across data.
- Resizing: Images were resized to one-third of their original dimensions to simulate single cough events and remove padding silences.

Mel Spectrograms Hyperparameters

Hyperparameter	Value	Description
sample_rate	22,050 Hz	Number of audio samples per second.
n_fft	2,048	Size of the FFT window, affecting frequency detail.
hop_length	256	Samples between successive frames, influencing time resolution.
n_mels	256	Number of Mel frequency bins in the spectrogram.
fmax	8,000 Hz	Upper frequency limit displayed in spectrograms.

Sample

Custom CNN Model Architecture

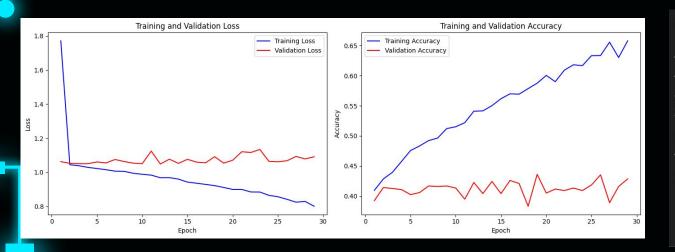
Model Architecture

Layer	Туре	Configuration
Convolutional Layer 1	Conv2d	1 input channel, 32 filters, 3×3 kernel, padding=1
Batch Normalization 1	BatchNorm2d	32 features
Activation Function	LeakyReLU	Negative slope=0.01, applied after BatchNorm1
Pooling Layer 1	MaxPool2d	2×2 kernel, stride=2
Convolutional Layer 2	Conv2d	32 input channels, 64 filters, 3×3 kernel, padding=1
Batch Normalization 2	BatchNorm2d	64 features
Activation Function	LeakyReLU	Negative slope=0.01, applied after Conv2
Pooling Layer 2	MaxPool2d	2×2 kernel, stride=2
Global Average Pooling	AdaptiveAvgPool2d	Output size: (1, 1)
Dropout Layer 1	Dropout	Dropout rate: 0.4
Fully Connected Layer 1	Linear	Input: 64 neurons, Output: 64 neurons
Dropout Layer 2	Dropout	Dropout rate: 0.5
Fully Connected Layer 2	Linear	Input: 64 neurons, Output: 10 classes

Training Process and Hyperparameters

Model Hyperparameters

Hyperparameter	Value	Description
Loss Function	CrossEntropyLoss	Used for multi-class classification.
Optimizer	SGD	Stochastic Gradient Descent with momentum.
Learning Rate	0.01	Step size for updating weights.
Momentum	0.9	Momentum factor for SGD optimizer.
Weight Decay	0.001	L2 regularization parameter to prevent overfitting.
Number of Classes	10	Total classes for classification.
Input Size (Spectrogram)	224 × 97	Dimensions of the input Mel spectrograms.
Batch Size	64	Number of samples per training batch.
Dropout Rate 1	0.4	Dropout rate after global average pooling.
Dropout Rate 2	0.5	Dropout rate before the final fully connected layer.


Improvement

Improved Training Dynamics: Enhancements led to higher training accuracy and reduced loss.

Experiment Focus: Experiment 4 used augmented, high-resolution grayscale spectrograms; Experiment 5 added new data processed with librosa and oversampling.

Validation Challenges: Despite training improvements, validation accuracy remained unchanged, highlighting generalization issues.

Results for best model

Results: Training Loss: 0.80 Training Accuracy: 65.80% Validation Loss: 1.09 Validation Accuracy: 42.85% Best Epoch: 19 Training Runtime: 1.97 minutes Confusion Matrix: [[3 105 121] [3 269 217] [6 227 237]]

Results for all models

Experiment Results

F	T	Turiniu	Validation I and	Malidation Assument	Bast Frank	Turinin a Brantina
Experiment	Training Loss	Training Accuracy	Validation Loss	Validation Accuracy	Best Epoch	Training Runtime
Benchmark	0.90	57.83%	1.12	40.91%	9	1.26 minutes
he	0.80	65.80%	1.09	42.85%	19	1.97 minutes
xavier	0.99	51.04%	1.06	41.84%	5	1.03 minutes
deep	0.99	50.59%	1.08	41.84%	12	4.04 minutes
wide	0.79	65.04%	1.22	40.99%	8	9.73 minutes
ELU	0.93	55.08%	1.18	41.16%	6	1.17 minutes
Swish	0.96	53.31%	1.06	43.27%	3	1.61 minutes
Focal	0.35	62.40%	0.51	41.50%	19	2.05 minutes
Label Smoothing	0.98	54.24%	1.13	40.82%	11	1.45 minutes
Dropout	0.96	53.28%	1.10	40.15%	6	1.23 minutes
L2	0.93	55.98%	1.12	42.34%	17	1.94 minutes
Momentum	0.87	59.60%	1.14	38.89%	6	0.95 minutes

Results for all models

Benchmark

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	22	104	103
Class 2	21	248	220
Class 3	25	229	216

deep

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	2	41	186
Class 2	4	104	381
Class 3	3	76	391

Swish

Actual \ Predicted	Class 1	Class 2	Class
Class 1	6	109	114
Class 2	9	249	231
Class 3	7	204	259

Dropout

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	13	47	169
Class 2	20	121	348
Class 3	19	108	343

he

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	3	105	121
Class 2	3	269	217
Class 3	6	227	237

wide

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	47	173	9
Class 2	55	416	18
Class 3	66	380	24

Focal

Actual \ Predicted	Class 1	Class 2	Class
Class 1	21	104	104
Class 2	12	254	223
Class 3	14	238	218

L2

•	Actual \ Predicted	Class 1	Class 2	Class 3
	Class 1	5	147	77
	Class 2	9	346	134
	Class 3	10	308	152

xavier

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	2	160	67
Class 2	3	364	122
Class 3	7	332	131

ELU

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	13	135	81
Class 2	25	309	155
Class 3	19	284	167

Label Smoothing

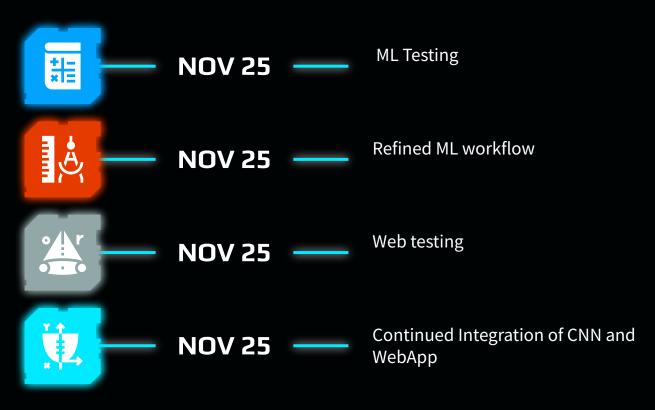
Actual \ Predicted	Class 1	Class 2	Class
Class 1	4	68	157
Class 2	6	161	322
Class 3	4	146	320

Momentum

Actual \ Predicted	Class 1	Class 2	Class 3
Class 1	23	47	159
Class 2	33	118	338
Class 3	33	116	321

Task 3 - Begin Web Testing

- Database has been developed for users
 - Will be changed to include additional user info and improved security
- Home page and research page have been added
- Audio model has been added
- Initial audio recording ability has been started
- Integration and testing with user model is in progress.


Task 4 - Integration Testing

- Refining user model to handle data required for covid predictions.
- Added initial audio recording capability required for ML model
- Planned tests for data flow (audio uploads) ensuring it is isolated to each user

Task Matrix: Milestone 4

Task	Rodrigo	Emma	Lamine	Audrey
1. ML Testing	Test using benchmark model (ResNet50) and initial testing from our model.			
2. Refined ML Workflow	Continue to improve the ML model. Determine which improvement strategies to implement based on testing results.			
3. Web Testing	Continue implementing a framework for users to access the CNN and upload their coughs.			
4. Integrating WebApp and CNN	Determine what may need to change within the web framework to better accommodate and suit the CNN.			

Milestone 4

